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Convergence difficulties that sometimes occur if the successive overrelaxation (SOR) 
method is applied to the Poisson equation on a region with irregular free boundaries are 
analyzed. It is shown that these difficulties are related to the treatment of the free boundaries 
and caused by the appearance of complex eigenvalues in the system of discrete equations, 
when standard centered differences are used. After a modification of this system of equations 
such that the complex eigenvalues become small, a modified SOR method is presented where 
two relaxation factors are used alternately. The method leads to fast convergence without 
requiring specific information about the complex eigenvalues. c) 1985 Academic Press, Inc 

1. INTRODUCTION 

When the unsteady Navier-Stokes equations formulated in primitive variables 
are solved by a time marching technique, the pressure is usually determined from a 
Poisson equation. Since we have to solve this Poisson equation in each time step, 
which is the most time consuming part of the computational effort, and since a 
typical run may consist of up to 100,000 time steps, it is worthwhile to look for fast 
numerical methods for solving a Poisson equation. The choice of a suitable method 
depends on the details of the flow problem on hand. Our interest is focussed on the 
simulation of liquid motion in the presence of a free liquid surface. An established 
method for solving flow problems with free surfaces is the MAC (marker-and-cell) 
method, developed in the mid-sixties by Welch et al. [ 11. This method forms the 
basis for a very popular family of methods, of which each member is dedicated to a 
specific physical situation. For flows involving arbitrarily shaped free surfaces, the 
SOLA-VOF technique, introduced by Hirt and Nichols [2], is probably the most 
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powerful. The method has been used successfully for a large number of applications, 
e.g., bubble dynamics [3], sloshing of liquid in baffled ship tanks [4], and liquid 
sloshing in spacecraft under micro-gravity [S]. 

In the course of the latter application the desire arose to replace the Poisson 
solver of the SOLA-VOF code. This solver belongs to the class of point-iterative 
methods, accelerated by means of a single relaxation parameter. Per iteration, 
point-iterative methods are very cheap in terms of computational effort. Hence, 
when not too many iterations are required they are sufftciently efficient. This 
situation occurs when the fluid motion is almost stationary, since then a very good 
initial guess for the solution of the Poisson equation is available from the previous 
time step. Under more general circumstances many iterations may be required even 
with an optimal choice of the relaxation parameter. We will see in the sequel that 
the boundary condition on the free liquid surface is responsible for the slow con- 
vergence. To be more precise, this boundary condition introduces complex eigen- 
values in the discrete Poisson equation, for which standard relaxation strategies like 
SOR are not particularly suited. 

In the last decade a number of other solution techniques have been developed. 
Within the class of direct ( = noniterative) methods, those based on Fourier 
analysis and cyclic reduction (see the review paper by Schwartztrauber [6]) have 
gained great popularity. For internal flow problems without moving free surfaces, 
they have been combined successfully with the MAC method [7]. Irregularities in 
the computational domain can be handled by the capacitance matrix technique. 
However, when the shape of the domain is changing each time step, as is the case 
with a moving free surface, the computational overhead required by the latter 
technique makes these direct methods less attractive. 

Also within the class of iterative techniques two types of methods have matured 
recently: methods based on matrix preconditioning, such as the ICCG method [S], 
and the multi-level methods [9]. In the former methods, prior to starting the 
iterations, an incomplete decomposition of the discrete matrix is constructed which 
has very good convergence properties. In the multi-level methods the iterative 
solution is pursued by using various grids, of which the finest one corresponds to 
the desired solution. A high convergence rate can be obtained; however, the use of 
various grids requires that on each grid a version of the discrete solution matrix has 
to be determined before the iterations can start. Both types of methods perform 
very well on line grids; the start-up overhead and the higher computational effort 
per iteration, as compared to point-iterative schemes like SOR, are clearly compen- 
sated by a much higher convergence rate of the iterative process. On the coarser 
grids, which are used in the fluid flow calculations we are interested in, this com- 
parison is less pronounced. 

In recent years a new aspect is playing a role in the trade-off between the various 
solution methods: the amount of parallelism in the algorithm. The current super- 
computers like CDC Cyber 205 and Cray-I differ in their internal architecture from 
the traditional computers. In scalar machines the central processor performs its 
operations one at a time (sequentially), whereas in the supercomputers operations 
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can be carried out in parallel. To profit from this property it is necessary that the 
computational process can be divided into a number of independent parts that can 
go on concurrently. For instance, when the arithmetic to be performed for one grid 
point is independent of what is going on in the other grid points, all grid points can 
be treated at the same time. The extent to which this is possible depends upon the 
structure of the numerical algorithm used. As an example, point-iterative methods 
can profit relatively more from this, making them more competitive in comparison 
to other methods. 

In view of these arguments it was decided to investigate point-iterative methods 
particularly suited for systems of equations with complex eigenvalues. Special 
emphasis is given to the Poisson equation present in the SOLA-VOF code for the 
simulation of free-surface liquid dynamics. The results of this investigation are 
presented in this paper. Section 2 contains the description of the Poisson problem 
we are interested in. In Section 3 it is explained why the complex eigenvalues slow 
down the convergence of the SOR method. Thereafter the discrete equations are 
reformulated in order to decrease the size of the complex eigenvalues (Section 4). 
Based on the theory given in Section 5, it is suggested in Section 6 that alternate use 
of two relaxation parameters be made. One parameter is selected to decrease the 
iteration residuals in the subspace spanned by the eigenvectors corresponding to the 
complex eigenvalues. The other parameter does the same for the residuals in the 
subspace corresponding to the real eigenvalues. When all eigenvalues are real the 
optimum SOR parameter is selected. When complex eigenvalues are present it will 
be shown that the use of two relaxation parameters, in the way described above, 
leads to much faster convergence than can be obtained with optimum SOR. 

2. FORMULATION OF THE PROBLEM 

We consider a two-dimensional Poisson equation for the pressure distribution of 
the fluid inside a partly filled container. For analysing the difficulties mentioned in 
the Introduction we consider configurations as given in Fig. 1, where the container 

FIG. 1. The region A occupied by the fluid and its free surface C. 
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corresponds with the square [0, l] x [0, 11 and the height of the free surface C can 
be described as a single-valued function of x. 

In the MAC-type calculation methods the Poisson problem can be stated as 

Ap=f on A, (1) 

P=Po on C, (2) 

ap 
-&=g on the container wall, (3) 

where f ,po and g are given functions and d/an means differentiation in the direction 
of the outward normal. The problem is discretized via a rectangular grid covering 
the whole of the container. For ease of presentation in the analysis the grid spacing 
is chosen to be the same in both directions, thus the grid points are (ih, jh); i, j= 
0, l,..., m (h = l/m). The cells of this grid are labeled to indicate their position with 
respect to the liquid. Three types of cells can be distinguished: empty, surface and 
full cells. Empty cells contain no liquid at all, surface cells are cells containing liquid 
but have at least one empty neighbour cell, and the other cells containing fluid are 
termed full. The pressure p is defined in cell centers (xi, yj) = ((i - $) h, (j- 4) h). 

In the center of a full cell Eq. (1) is applied, which in discrete form (using second- 
order central differences) reads 

Pi-I,j+Pi,j- I-4Pi.j+P~+l,j+Pi,j+Izh2f(Xi~ Y,). (4) 

For points adjacent to the wall the Neumann condition (3) is used to eliminate 
pressure values corresponding to points outside the container. For example, in the 
column i= 1 the Poisson equation becomes 

The Dirichlet condition (2) is used to derive a discrete equation to be applied in 
the center of surface cells. In this equation also the pressure in an adjacent full cell 
shows up. When the surface cell has more than one neighbouring full cell, that one 
is selected for which the line connecting the respective cell centers is most 
orthogonal to the free surface. For details see [2]. Thus we end up with a typical 

FIG. 2. Implementation of the pressure condition at the free surface. 
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FIG. 3. The computational domain for m = 5 and n, = 8, n, = 9, n3 = 10, IL, = 9, n5 = 8. 

configuration as displayed in Fig. 2. Condition (2) will be applied at the point of 
intersection X of the free surface with the line connecting the center S of the surface 
cell and the center F of the full cell. The pressure in the point X is set equal to the 
value obtained from a linear interpolation (or extrapolation) between the pressure 
at the points S and F, 

P(S) - (1 - ~1 P(F) = V/JO (XL (5) 

where q = h/d is the ratio of the distance between the free surface and F (see Fig. 2). 
The resulting system of equations will be denoted in vector notation as 

Ap=b. (6) 

The empty cells are omitted from the computation. Thus the computational 
domain possesses a shape governed by the position of the free surface. For con- 
figurations like the one in Fig. 1, the domain can be characterized by numbers n, 
(i=O, l,..., m), where n, is equal to the number of cells in the ith column which take 
actively part in the calculation (full cells and surface cells). An example is given in 
Fig. 3. Our investigations in the sequel of the paper will be performed for various 
choices of n,. 

3. THE DIFFICULTIES WITH SOR 

If SOR is employed to solve the system (6), it turns out that the optimum 
relaxation factor w opt strongly depends upon the values of q and for larger values of 
r] even the Gauss-Seidel process diverges. Thus we may conclude that the eigen- 
values of the corresponding Jacobi matrix are greatly influenced by the values of 4. 
In the special case of a free surface with constant height and a non-staggered grid, it 
is possible to apply separation. After some analytic manipulation we find that the 
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TABLE I 

The Six Real Eigenvalues of Largest Modulus and the Complex Eigenvalues of 
the Jacobi Matrix for Various Configurations 

‘II> v2r-, T5 8, 8, 8, 8, 8 8, 9, 10, 9, 8 6, 7, 8, 9, 10 

5, 10, 5, 10, 5 kO.983 
kO.856 
kO.855 

* 1.4lOi 
+ 0.042 + 1.2561’ 

k 1.165i 
& 1.009i 

1, 5, 10, 50, 100 + 0.983 
k 0.860 
kO.853 

+ 5.7231’ 
f 3.4871’ 
* 1.45oi 
+ 0.96Oi 

1, 10,50,100,500 kO.983 
kO.858 
kO.853 

k 12.8891’ 
* 4.9581’ 
& 3.4891’ 
+ 1.46Oi 

2 0.985 
kO.874 
k 0.857 

& 1.453 
kO.023 + 1.2271 

f. 1.113i 
+ 1.077i 

+ 0.985 
+ 0.882 
kO.857 

* 5.719i 
_+ 3.4851’ 
& 1.4891’ 
& 0.9681’ 

& 0.986 
10.881 
kO.856 

k 12.8871’ 
+ 4.9571’ 
* 3.5Oli 
+ 1.4661’ 

f 0.978 
_+ 0.867 
kO.820 

i 1.403i 
f 0.086 + 1.2741’ 

$- 1.123i 
f 1.026i 

i-O.981 
IO.867 
+ 0.834 

* 5.729i 
_+ 3.4871’ 
* 1.45oi 
+ 0.9681’ 

+ 0.980 
kO.866 
k 0.832 

& 12.8921’ 
5 4.9561’ 
+ 3.4891’ 
f 1.4661 

eigenvalues become complex for r > 1 and that for large values of q the imaginary 
part of the eigenvalues is given approximately by 

tJII-1 (7) 

while the real parts remain relatively small. 
The method of separation fails on the staggered grid, but for various con- 

figurations we have determined the eigenvalues numerically. Some typical examples 
are given in Table I for m = 5 and interpolation in y-direction. All results indicate 
that even for nonhorizontal surfaces there is a similar relation between the values of 
r] and the imaginary parts. We also notice that the real parts of the eigenvalues are 
in absolute value smaller than 1 and that the dominant ones correspond with real 
eigenvalues of the Jacobi matrix. A well known result from SOR theory is the 
relation 

(2 + co - 1 )Z = ko2p2 (8) 
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FIG. 4. The graphs of p,(w) and p*(o) defined by (9). 

between the eigenvalues 1 of the SOR matrix and the eigenvalues ~1 of the Jacobi 
matrix. From this relation it follows that if all eigenvalues p satisfy JRe ~1 < 1, the 
SOR method converges for w sufficiently small. However, even for the optimal 
choice o,,~~, the convergence can be extremely slow. This is easily demonstrated in 
the last case of Table I by restricting the spectrum of the Jacobi matrix to the 
dominant real and complex eigenvalues &pi, i= 1,2, with pi = 0.980 and 
,u2 = 12.8921’. Let Ai+ (0) and & (0) be the eigenvalues of the SOR matrix 
corresponding with *pi and define 

P,(O) = max 1 IV (ON, 16 (w)l>, i= 1,2. (9) 

Both graphs are shown in Fig. 4. In the point of intersection we have w = o,~~ = 
0.144 and pi(wopt) = 0.997, clearly illustrating the slow convergence. More details 
and further references can be found in Botta and Veldman [lo]. 

4. THE MODIFIED SYSTEM OF EQUATIONS 

In the previous section we have seen that the slow convergence of the SOR 
method is caused by the appearance of complex eigenvalues in the Jacobi matrix 
due to values q > 1. Let us consider a single equation of type (5) 

P(S)-(l-v)dF)=b,, 

and suppose that point F, for which we have an equation of type (4) 

(10) 

dFw I+ P(F, I- 4dF) + P(F, I+ P(S) = h, 3 (11) 

is the only point connected with S. Since the numbering of points has no influence 
on the spectrum of the Jacobi matrix, we may start with the points F and S. Then, 
aside from the second element, the first row and column of this matrix are zero; see 
Fig. 5. It will be clear that only the product 4 (1 - r]) of these elements is of interest 
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ro i-9 o...ol 

FIG. 5. The first row and column of the Jacobi matrix. 

for the eigenvalues of the matrix. However, this product can become arbitrarily 
large and the only way to avoid this difficulty is to replace the element + by 0. This 
can be done by subtracting Eq. (10) from Eq. ( 1 1 ), thus replacing (11) by 

PV’,. I+ P(& I- (3 + rl) P(F) +P(F,) = b, -b,. (12) 

For the Jacobi matrix this means the following modification of the second row: the 
first element $ becomes 0 and the other elements 4 must be replaced by l/(3 -t q). 
Hence, the sum of the elements in the second row usually becomes smaller and the 
element 1 - q in the first row is no longer of influence. For a horizontal surface each 
surface cell has only one neighbouring full cell and therefore the various 
modifications lead in fact to the elimination of all surface cells in the equations for 
the full cells. For this special configuration it can be shown analytically that all 
eigenvalues become real and in absolute value smaller than 1. Unfortunately, com- 
plex eigenvalues appear again for more general surfaces, as is shown in Table II 
where the corresponding results from Table I are given for the modified system. We 
observe that the absolute value of the complex eigenvalues is significantly lower as 
compared with the old situation. The dominant eigenvalues are all real and their 
absolute value is less than 1. This last fact can be proven for all surfaces where the 
center S of a surface cell is connected with at most two centers of full cells, which is 
the normal situation; see Fig. 6. It can be done by replacing the Jacobi matrix by a 
similar matrix (thus with the same eigenvalues) with a row norm smaller than 1. If 
the point S is connected with 3 or 4 centers of full cells we neither did find a simple 
proof, nor did we find a counterexample. 

If SOR is applied to the modified system the convergence is much faster as com- 
pared with the old situation. This is demonstrated by a discussion of the same kind 
as given at the end of Section 3 for the corresponding case in Table II. With 
pi = 0.980 and pZ = 0.097 + 0.215i we now find a spectral radius of 0.857 instead of 
0.997. Although this is a considerable improvement, the convergence remains rather 
slow and in the next section we will give the theoretical framework for a faster 
method. 

We finally remark that, in general, the live-point structure is not retained after a 
complete elimination of the surface cells. This prohibits efficient programming and 
the application of SOR theory and therefore complete elimination is not recommen- 
dable. 
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TABLE II 

Eigenvalues as in Table 1 for the Modified System 

n,, n,,..., ns 

‘11, V2.T vs 8, 8, 8, 8, 8 8, 9, 10, 9, 8 6, I, 8, 9, 10 

5, 10, 5, IO, 5 * 0.983 
kO.857 
kO.856 

1, 5, 10, 50, 100 

1, 10,50, 100,500 

+ 0.983 
kO.861 
kO.854 

i0.983 
kO.859 
kO.853 

* 0.985 
kO.875 
kO.857 
k 0.406 + 0.259i 

+ 0.235i 
*0.264*0.118i 
k 0.109 + 0.046i 
+ 0.132 + 0.02Oi 

kO.986 
kO.882 
kO.857 

k 0.2551’ 
kO.363 k 0.2391’ 
~0.155~0.044i 
& 0.289 k 0.026i 
* 0.084 f 0.022i 
+ 0.5 15 * 0.007i 

+ 0.986 
kO.881 
i 0.856 

* 0.2281’ 
f 0.282 * 0.173i 
+ 0.148 k 0.039i 
kO.085 + 0.018i 
& 0.291 k 0.017i 

kO.978 
kO.867 
k 0.822 

* 0.2971’ 
k 0.229 k 0.2821’ 
k 0.457 k 0.2641’ 
kO.172 & 0.06Oi 
k 0.448 + 0.042i 

k 0.98 1 
f 0.867 
f 0.834 
+O.lll kO.2241 
kO.321 kO.156i 

k 0.084i 
* 0.041i 

kO.980 
f 0.866 
k 0.832 
* 0.097 * 0.215i 
+0.272*0.137i 

k 0.083i 

FIG. 6. The cell labeling and the connection between surface cells and full cells. 
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5. INVARIANT SUBSPACES AND CONVERGENCE 

If we take a chessboard ordering of the grid points with I “white” points and m 
“black” points, we can write the Jacobi matrix B in partitioned form as 

B= 

with R an 1 x m matrix, L an m x 1 matrix and 0 a zero matrix. Throughout this sec- 
tion we will use this partitioning for vectors and matrices. 

We start considering the case that the eigenvectors of B form a basis for CN. If pi 
is an eigenvalue of B and 

the corresponding eigenvector then it is straightforward to verify that also 

is an eigenvector of B and ---CL, the associated eigenvalue. Thus, the eigenvalues of B 
occur in pairs. Let all nonzero eigenvalues of B be given by the k pairs fpi, 
i = 1, 2,..., k, with Re pi > 0 and define the subspaces 

(13) 

spanned by the eigenvectors associated with fpi. Finally, we define the subspace 
K, as the nullspace of B, i.e., the set of all vectors x for which Bx = 0. Clearly, 

CN=Ko@K,@ A.- @lu,, (14) 

and all subspaces K, are invariant under B. 
For the same ordening of grid points, we now consider the SOR matrix 

HO=[ -iL 191-l [(l-(y (l:y’ (15) 

where I, and I, are identity matrices. In Section 3 we have already given the 
relation (8) between the eigenvalues of B and H(o). Let A+ and II; be the roots of 
Eq. (8) for p2 = ,uf # 0. Evidently, IA+ A,- 1 = (w - 1)’ and therefore we can always 
take 111: 1 > 10 - 11 > 12; I. Now it can directly be verified that the eigenvectors of 
H(o) associated with the eigenvalues A,? and A; are given by 

((&+;‘I2 wi> and (sign (o- I:;(l;)1/2 WI’ (16) 
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respectively. For A+ #A, the eigenvectors (16) form a basis for the subspace K,, 
whereas for Ai+ = 1,: these eigenvectors become dependent, but it can be shown 
that 

( 0 
f(&? ) ~ ‘12 Wi 1 

(17) 

is a principal vector of grade 2 and hence the subspace Kj is invariant under H(o) 
as well as under B. 

We will now consider the convergence of the SOR method in connection with the 
subspaces Ki. The error after n iterations is denoted by sCn) and since E(“+‘) = 
H(o) d”), we have 

Ecn) = (H(o))” E(O). 

From (14) we know that the error E (‘I in the starting values can be written as the 
sum of its components in the subspaces Ki, i.e., 

do) = ,go E;‘) , &I’) E Kj. 

If Hi(o) is the restriction of H(o) to the subspace Ki, we obtain 

&(“I = $ (Hi(w))” &IO) ) 
,=O 

and for studying the convergence of the iteration process we only have to examine 
the convergence within a single subspace Ki. Therefore, we restrict ourselves to one 
component 

&!“I = (H.(o))” &!O’ 1 

and, for brevity, to the case o 2 1 and 1: # 1,:. Now the eigenvectors (16) of H(o) 
form a basis for K, on which we can represent Hi(o) by the diagonal matrix 

A;(w)= o 

1 

n:(o) 0 1 2,: (w) ’ 
(18) 

but this basis depends on o through 1: (0). As follows from the construction of 
(13), we can define another basis by 

(19) 

which is independent of w. Using (16) and (18) we can write Hi(w) on the basis 
(19) as 
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with 

Qco)= [ (&))‘i’ l li2]-1[: (I; (w)) _:I. 

Let &IO) on the basis (19) be given by 

p)= c1 
i o3 c2 

then 

= Q-'(co) A;(o) Q(o) . 

Since we have taken In+ (o)l 2 In,:(o)/, we can find for a given norm jj . Ij a con- 
stant C such that for all n 

I~&pq < cln’(o)l” (20) 

and, more generally, after n, iterations with a relaxation factor oi and, in addition, 
n, iterations with a relaxation factor 02, we find similarly 

llep+“2’ll < C’(pAq))” (P;(%)Y2 

with p,(w) defined as in (9). 

(21) 

In the foregoing we have made the restrictions w > 1 and 12 #1;, The first 
restriction was made for reasons of shortness and is not essential. If Jr+ = 1;) 
however, the vectors (16) are dependent and to get a basis for Ki we must add (17). 
This leads to a slight modification of (20) in the sense that the constant C now 
depends on n and must be replaced by n times a new constant, similar to what hap- 
pens within SOR for the optimum relaxation factor; see [ll]. 

In the beginning of this section we made the assumption that the eigenvectors of 
B form a basis for cN, a quite common situation. But even if this is not true, it 
remains possible to define in a similar way subspaces Ki which are invariant under 
H(o) and where H(o) has only the eigenvalues 2: and i,:. Therefore the con- 
vergence within Ki is again determined by the spectral radius p,(w) of Hi(w). In the 
next section we will show how to exploit this property. 

6. NUMERICAL METHOD AND RESULTS 

We consider first, in the notation of the foregoing theory, the example given at 
the end of Section 4, where the spectrum of the Jacobi matrix is restricted to the 
eigenvalues +-pi, i= 1,2, with pi =0.980 and p2 = 0.097 + 0.21%. As we have seen, 
the SOR convergence within the subspace Ki belonging to ffii, is determined by 
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the spectral radius p,(o) of Hi(o). The function pi (0) is well known from stan- 
dard SOR theory, but the function p2(w) is more complicated and for explicit for- 
mulae we refer to [lo]. If oj denotes the value of o for which p,(o) attains its 
minimum, it turns out that 

0, = 1.668, pi(w,)=o.668, p*(w,) = 1.034, 

w2 = 0.988, p1 (w2) = 0.961, p2 (w2) = 0.045. 

Thus, the SOR process with o =ol leads to convergence within the subspace K, 
and to slow divergence within K,, whereas for w = w2 SOR converges slowly within 
K, but extremely fast within K,. In order to get fast convergence in as well K, as 
K2, we combine both iterations: alternately we do n, iterations with oi and n, 
iterations with w2. If we require the errors in K, and K2 to be of about the same 
size, we must take 

In our example this leads to n z % O.l4n, and an average spectral radius of 0.699 
which is only slightly above pi(w,) and much better than the value 0.857 given in 
Section 4 which was obtained for a fixed optimum relaxation factor. 

We will now show that for the modified system of equations given in Section 4, 
this approach can even be applied to the full Jacobi spectrum. Let us first add the 
real eigenvalues -t-p, with lpr 1 < pi. From SOR theory we know that p,(o) 
< pi (0) and therefore these eigenvalues do not effect the convergence. Hence, as in 
the classical case of overrelaxation, the choice of o1 must be based on the largest 
real eigenvalue pi or, more practically, on a slight overestimation p* hereof. 
Therefore we replace oi by 

(jj*= 
2 

1 + [ 1 - (p*)‘]“2’ 

In Table II we can see that the dominant real eigenvalues are hardly influenced by 
the values of q and hence we let .D* only depend upon the number of grid points. 

With respect to all complex eigenvalues fp,, the situation is less predictable 
since there is no corresponding ordening of the curves p,(w). Moreover, the com- 
plex eigenvalues are greatly influenced by the position of the free surface. In Sec- 
tion 4 we have seen, however, that 1~~ 12e 1 and as a consequence the curves p,(o) 
reach their minima for values of w close to 1. Consequently we take w = 1 (i.e., 
Gauss-Seidel with p,( 1) = (pc 1’) as an effective choice for reducing the errors 
within the subspaces associated with complex eigenvalues. 

The ratio of the number of iterations with o = w* and w = 1 depends upon the 
(usually unknown) maximum values of p,( 1) and p,(w*). Fortunately, the decision 
whether to iterate with w = w* or w = 1 can be made during the iteration. Roughly 
speaking, we can iterate with w = w* until the convergence becomes “significantly 
slower” than might be expected for a spectral radius w* - 1. Since this slowing- 
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down is caused by the (eventually growing) errors in the subspaces associated with 
the complex eigenvalues, we next iterate with w = 1 as long as the convergence is 
“significantly faster” than might be expected for a spectral radius PT. Hereafter we 
continue again with w=o*. Of course we must be more specific about what is 
called significantly slower and faster. Although the implementation hereof is not 
very critical, it is recommendable not to exaggerate the number of changes in w. 

In our computer program we calculate, as is most common, the maximum norm 
/lull of the difference of two successive iterates p’“’ and p’” + I). The iteration is 
alway: started with o = 1. During the iteration with o = 1 we use 
A,= Il~~n+‘~ll~/II~~n~l103 as a measure of the rapidity of convergence. Theoretically 
A, tends to PL: and therefore we switch to o = o* as soon as I*, becomes larger than 
0.9(~*)~, which stands for a value somewhat smaller than pf. To eliminate the 
influence of irregularities we perform the first 10 iterations after a change in w 
without tests. The choice w = o* is retained during the next p iterations as long as 
116’“‘11 Tc remains smaller than lO(o* - 1)” [16’+ “)I\ m. 

For a comparison of the present method and SOR we have tested both methods 
by solving the modified system of equations given in Section 4 with all right-hand 
sides equal to zero; thus the exact solution pc30) is zero as well. In Table III we have 
given, for several configurations and starting values 1, the number of iterations 
required to get llp”“ll co < lo-*. With respect to the SOR method we remark that an 
accurate estimation of the optimum relaxation factor requires full knowledge of the 
complex eigenvalues in the Jacobi spectrum and this is unrealistic. Therefore we 
have only listed the SOR results for some fixed values of w. The results in Table III 
clearly demonstrate the advantage of the present method over the SOR method and 

TABLE III 

Comparison of the Number of Iterations for SOR and the Present Method 

SOR Present method 

4, hr..., n, ‘II, ‘l2Y7 vs 

5, 10, 5, 10, 5 
8, 9, 10, 9, 8 1, 5, 10, 50, 100 

1, 10, 50,100,500 
1, 10, 100, 10, 1 

5, 10, 5, 10, 5 
6, 7, 8, 9, 10 1, 5, 10, 50, 100 

1, 10, 50, 100,500 
1, 10, 100, 10, 1 

5, 10, 5, 10, 5 
17, 18, 19, 18, 17 1, 5, 10, 50, 100 

1, 10, 50,100,500 
1, 10, 100, 10, 1 

w=l.4 w=1.5 w=1.6 w=165w=lorw* w* 

258 195 div div 93 
270 204 div div 80 1.75 
268 203 669 div 87 
304 231 164 131 75 

168 293 div div 82 
195 146 472 div 63 1.70 
192 143 372 div 63 
240 div div div 82 

1435 1111 div div 208 
1462 1132 div div 168 1.88 
1458 1129 839 div 184 
1541 1194 888 747 150 
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are in full agreement with the theory. For a number of configurations the eigen- 
values of interest can be found in Table II. The complex ones determine a value 
w max < 2 above which SOR diverges and as we see in Table III, o,,, varies with the 
values of q. Consequentially, to avoid divergence of SOR in the calculations with a 
varying free surface we are forced to take a rather low choice of w, which causes an 
additional slowing-down. The last four cases of Table III show the effect of an 
increase in the number of grid points in the y-direction. The results may be well 
understood if we remark that the complex eigenvalues of the Jacobi matrix remain 
nearly the same as in the corresponding first four cases of Table III, where we have 
a similar form of the free surface. As is usual for a grid refinement the real eigen- 
values are changed by which the largest real eigenvalue comes closer to 1. In the 
present method the value of o* is adjusted but in SOR the complex eigenvalues 
limit the relaxation factor and therefore the advantage of the present method is 
even enlarged for an increasing number of grid points. 

7. CONCLUSION 

We have presented an iterative method that efficiently eliminates the difficulties 
caused by the appearance of small complex eigenvalues in the Jacobi matrix. In the 
SOR method such eigenvalues have great influence on the value of the optimum 
relaxation factor and an overestimation easily leads to divergence. In the present 
method the optimum choice of the relaxation factor o* is much less critical and 
does not depend upon the complex eigenvalues. A number of test calculations have 
demonstrated the advantage of the present method over the SOR method. 
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